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Conformational statistics of stiff macromolecules as solutions to partial differential equations
on the rotation and motion groups
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Partial differential equation@DE’s) for the probability density functiofPDF) of the position and orien-
tation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The
Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-
Siggia models are examples of stiffness models to which the present formulation is applied. The solution
technique uses harmonic analysis on the rotation and motion groups to convert PDE’s governing the PDF’s of
interest into linear algebraic equations which have mathematically elegant solutions.

PACS numbgs): 36.20.Ey, 87.16.Ac, 05.168.4a, 02.30.Jr

[. INTRODUCTION to numerous manmade stiff molecules to be invented in the
twenty-first century.

A quantity of importance in polymer science is the prob-  Orientations are described as elements of the rotation
ability density function describing the relative occurrence ofgroup, SO(3)[the set of 3<3 real matrices satisfying'A
positions and orientations of the distal end of the chain for a=1 and detf)=1]. Translations(and positions are de-
given position and orientation of the proximal €iid-4]. For  scribed as elements of three-spaee:R®. The Euclidean
flexible chains, the orientation distribution quickly reachesmotion group(or special Euclidean groupSE(3), is the
its limiting form, which is a constant over all orientations semidirect product oR?* with the special orthogonal group,
[2]. Hence, the distribution of end positiofithout regard  SO(3). Wedenote elements of SE(3) gs=(a,A) € SE(3),
to orientation has been the subject of intensive study overwhere Ae SO(3) andae R3. The group law is written as
the past half centurysee, e.g.[5,3,6] for complete reviews g,og,=(a;+A;a,,A;A,) andg *=(—ATa,AT). Any ele-
of the literature, and remains of interest to the present dayment of SE(3) can be written as the product of a pure trans-
[7.8]. lation and pure rotation as(A) = (a,1)°(0,A).

In the case of stiff chainge.g., DNA), a much greater One may represent any element of Slf(as an N+ 1)
and it cannot be considered constant when considering rela-
tively small segments of the chain. Hence, it is important to
characterize the evolution of a joint positional and orienta- H(g)=
tional probability density function in such cases.
e.g.,[9-29)). In particular, stiff polymer theories based on Clearly, H(g;)H(g,)=H(g;°g,) and H(g Y)=H %(g),
diffusion processes and path integral techniques can bgnd the mappingg—H(g) is an isomorphism between
found in[30-33 SE(N) and the set of homogeneous transformation matrices,

Experimental measurements of DNA stiffness parameterand so we henceforth make no distinction betweeand
density function(PDF) over many of its arguments can be are both elements of $8)], the translations(or position3
found in[25,39, and the whole distribution in the case of the wj|| be parametrized in either Cartesian or spherical coordi-
helical wormlike chain can be found i#]. DNA elastic  pates,
properties and experimental measurements of DNA elastic
extensible case, and draws on a number of group-theoretical
notations. The utility of our approach is that it is so general
that it is valid for any second-order stiffness and chirality az acosé
model. As an example of this generality, we show later in the
note that while our model is applicable to DNA, it is not angles,
limited to this case. In analogy with the way the Kratky-

Porod(KP) model for stiff polymers was introduced prior to
the discovery of DNA, we expect our model to be applicable Ala,B,7)=Qil €5, 2] Q[ 1,81 0t[ €3, 7],

length is required for the orientation distribution of the distal x (N+ 1) homogeneous transformation matrix of the form
The statistical mechanics of DNA and other stifform-
have been reported i184—38,4. Efforts to characterize in- H
twist/stretch coupling have also been reported4ig—44.
a=| a, | =| asinfsing
paper how the Kratky-Porof45—-47, Yamakawa[4], and

end relative to the proximal one to reach its limiting form,
A a)
o 1/
like) chains has received much attention in the literatses,
tegrals of the joint positional and orientational probability When describing a frame of reference or motfevhich
The approach presented here solves the most general in- a, asiné cos¢
Marko-Siggia[48] models all fit within our framework. We Rotations(or orientationyare parametrized usingXZ Euler
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where Q[ &,¢] denotes the rotation matrix describing A+B%/C 0 B Bwy
counterclockwise rotation by about the natural basis vector B— 0 A 0O b=| 0
& which has elementsg(); = &;; . - ' - '
B 0 C Cwg
Il. MODEL FORMULATION 1
. . . . _ 2
As is often the case in theoretical polymer science, analo- B’ —ECwo.

gies between the motion of a particle along a path and the

motion of an observer traversing a polymer chain allow forQther modifications of these models may be made to include

tools from classical and quantum mechanics to be applied.stretching effect§50], though the current presentation is re-
In particular, a number of authors have derived potentiaktricted to the inextensible case.

energies of bending and/or twisting of a stiff chain that are of \Wwe now generate the diffusion equation that governs the

the form evolution of the positional and orientation probability density

function F(a,A;s) for all values of B=s<L. Assuming that

the proximal end is fixed at the fram®,(), thenF(a,A;0)

=4(a) 5(A). Here the Dirac delta function on the motion

group is written as the product of those 8 and SO(3).
Under the constraint that the molecule is inextensible, and

all the frames of reference are attached to the backbone with

their localz axis pointing in the direction of the next frame,

one observes

L
Ezf U[w(s)]ds,
0
wherelL is the length of the macromolecule and

u:% "Bw—b'w+pA'. )
Here B=BTe R®*3 is a positive semidefinite matrixp
eR3, andB’ e R. w is the “angular velocity” of a frame of
reference which traverses the macromolecule, coinciding
with each framg a(s),A(s)] affixed to the backbone of the Hence, the PDF of interest can be formulated as the follow-
molecule for each value of arclengthThis “angular veloc-  ing path integral over the rotation group:
ity” is the dual vector of the skew symmetric matrix"A,

where the overdot denoteids. That is, wx x=ATAx for

all xe R3. This is completely analogous to the definition of
angular velocity of a rigid body as seen in the body fixed
frame with s taking the place of time. Henceforth, we will

use the notatioty = U (w)=U(A,A) to denote the fact that

the bending energy is a function of the rotation matrix and it

a(L)zjoLu(s)ds and u(s)=A(s)e;. (2

A(L)=A

F(a,A;L)=f P
A(0)=1

a(L)—foLu(s)ds)

xexp[—fLU(A,A)ds DIA(S)], (3
0

Swhere it is assumed that the bending endugg measured in

derivative through of the definition ab.

As well-known examples of Eq(l) from the polymer
science literature, consider the following.

The Kratky-Porod moddll,45]:

@ 0 O 0
B=| 0 a O, b=[0|, pg=o0
0O 0 O 0
The Yamakawa modgd]:
agy 0 O 0
B=( 0 a O |, b=| aoko],
0 0 Bo BoTo
’ 1 2 2
B :E(ﬁ070+aoko)-
The Marko-Siggia DNA mod¢#8]:
A" 0 B Bwy )
B={ 0 A O, b=| 0 |, ,3'=§cwg.
B 0 C Cwg

The revised Marko-Siggia modgt9:

units of kgT. Path integration over the rotation group has
been studied extensively in the literature in the context of
guantum mechanic¢see [51-54 and references thergin
Our notation and formulation follows that [4].

Using the classical Fourier transform pair

%(k)=jR3f(a)e-ik'ad3a

1
f(a)=

one writes

R A(L)=A L
F(k,A;L)=L\(O)I exr{—JO(ik-m—U)ds DIA(S)].

Treating the innermost integrand ames a Lagrangian
with kinetic and potential energies,

1
T=§inBw

and

V=i[b-w—p']+k-u
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(the constanB’ can be ignoredone calculates the momenta

J .
and Hamiltonian in the usual way, which for this case means | —-— 3 5. E (B " XFXR=2B, b X[ +ik- u) F=0.
oL 1 ©
=——>H=—i|zp'B p|+b"B p+k-u. (5
P oo 2P P P Henceforth we will use the quantite®B=B~! and d=
-B~'b.
Here and hencefortB is assumed to be positive defin{end The classical Fourier inversion formu(d) then converts
hence invertiblg (9 to
The quantization
R J 1 for <
p=—ix! (6) L3, 2 D XRXR—~ 2dx,+uv F=0,
is used, where the differential operat()(g acting on func- (10
tions on the rotation group are defined as which is a partial differential equatiofPDE) on the motion
group, SK3). The initial conditions are F(a,A;0)
XRf(A):df(A'Qrot[Q,t]) :df[AU‘HXi)]‘ = 5(a) 5(A).
: dt -0 dt ‘t:O’ IntegratingF over all positionsae R3, results in a purely
(7) orientational density function:
where f(A;s):j 3F(a,A;s)d3a.
R
0 0 O
1o o -1 Performing this integration over the initial conditions and
Xy= ' Eqg. (10) results in the SCB)-diffusion equation
01 O
J 1 Ry R : R
0 1 L3, 2 D XRXE de =0 (11
X2: ' b s o,
_ with initial conditionsf(A;0)= §(A).
Equation(11) is a partial differential equation that gov-
erns the evolution of the functiof on the rotation group
0 -10 SO(3). Itissolved in series form in Sec. Il using techniques
Xs={1 0 0], from noncommutative harmonic analysis. Equations similar
0 0 o to Eqg. (11) have been derived in, e.d36,37. Our goal in

this paper is to solve both E¢L1) and(10) in a numerically

o . efficient and mathematically elegant way.
The superscripR in XiR denotes the fact that the infinitesimal y €eg y

rotationl +tX; is applied on the right of the argument of the

function. This corresponds to an infinitesimal motion relative lll. HARMONIC ANALYSIS ON THE ROTATION GROUP

to the body-fixed frame in a rigid body. The matrix elements of the irreducible unitary representa-
Using the ZXZ Euler anglesd|3,y) these operators tjons |UR’s of SO(3) are given to within an arbitrary unitary
have the explicit form transformation by55-57:
_ g _siny g J Unn(@(a,B,7))=(=1)" Me (M MpL (cosp)
X =—cotB smy—+ sing Ja 0037%, (12)
N t A SN where
=—cotBcosy—+ —— — —siny—,
2 Peosy Gy T sing aa S8 | (1= m)! (1 +m)1 ]2
Pmn<°°sﬁ>—[m
X2
3__-
Iy ><sinm*”§coé“*”§PFT;“"“*“)(COS,B)
The Schrdinger-like equation corresponding to the (13)

Hamiltonian(5) and quantizationi6) is
andP{™"(-) are the Jacobi polynomials.
dF The matricesJ' with entriesU'mn are (4+1)X(21+1)
aL ' dimensional, and the indicies take the range of valuds
=m,n=<I|. These representation matrices posess the homo-
This takes the explicit form morphism and orthogonality properties
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U'(A1A2) =U'(A)U'(A) (14
and
’ 5 ’ 5 ! 5/
I | _ Ym'm©n’n 1’|
fSO(s)Um'“'(A)Um“(A) dA= (21+1) (15

Any square-integrable function on SO(3) can be ex-
panded in a Fourier series as

f(A)= 2(2|+1)2 Ef

m=—1| n=

Unm(A)

=|§O (21+1)Tr(f'u"), (16)

where the entries of the Fourier transform matfigf)' = f'
are defined as

fron= f F(A)Up(A™HdA. 17)
SO(3)

Here dA=(1/87?)sin BdadBdy is the invariant integration
measure for SO(3) normalized so thfag3dA=1. Hence,
by expanding the PDF in the PDE in Ed.1) into a Fourier
series on S(), the solution can be obtained once one
knows how the differential operatod? transform the ma-
trix eIementsU'rm(A). In fact, this is well known, and can
be found in[55,56 (adjusted for the differing definitions of

ul ) as

1
X?Ulm _2 Umn 1 2C Umn+1* (18)
Ryl 1 | | 1 Iyl
XZUmn:EIC—nUm,n—l—'—EICnUm,n+1! (19)
XRU},,=—inU},. (20)

where ¢l = \(I-n)(I+n+1) for I=|n| and c,=0 other-

W|se From th|s defmmon it is clear thatf=0c" —(n+1)
=cl,cl_,=c ., andc,_,=c", ;. Equations(18)—(20)
follow from Eq. (14) and the fact that

d | 1 | 1 |
aUmn(Qrot(elvt))lt:O:Ec—n5m+1,n_zcn5m—1,na

(21)
d i
dt mn(Qrot(eZ t )lt O__C 5m+1,n+§Cn5mfl,na
(22
Unnn(@rof(€3,0)]i=0= =i 8- (23)

By repeated application of these rules one finds
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1
(XR)zulmn_ C C n+1Umn 27 (lenclnfl

1
+c —n 1)U +4C Cn+1Umn+2'

(X3)2ul,= 7(C-nCn1

4C C n+1Umn 2~

1
I Al | 1Al
+Cncfnfl)umn_ chcn+lum n+21

21!
Umn’

(X§)?Upp=—n

i
4 n—2+Z(_C|—nCIn—1

XEXBUL Lo e Un

i
1Al | I Al
+Cncfnfl)um,n_ ZCnCnJrlUm n+21

_h
—ZC_

i
Ry Ry ! | | |
X2X1Um,n nC—n+1Um,n—2+Z(C—nCn—l

i
|
n_ chcn+lum n+2s

1Al |
_Cnc—n—l)Um,

XRXRU! =iE(—c' ub o 4+cul )
1%3% m,n 2 —n¥mn—1 n~Ymn+1/s

Ry ! | | n+l
XEXRUL, n= i Umn- 1+|Tc Uit
(n—1) (n+1)
X?I?XZRUIm,n: 2 CLn Im,nfl 2 CInUm,n+1v

XEXRUL —(c o1t ChUnne)-

As a direct result of the definition of the $8)-Fourier
inversion formula(16), one observes that if a differential
operatorX transformsU!.  as

XU n=X(MUp0ip

then there is a corresponding operational property of the
Fourier transform
f(Xf)m n_X(m p)fm p.n- (24)

We use this to write

FOXE)hn —m— 1f|m+1n 5¢ n—1fm- 1n
Reyl 1 | il 1

JI:.()(Zf)mnzzIC—m—lfm#—l,n—'—2 m— 1fm 1n:
FXE ) ma=—imTy,
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1 . 1 where
F((XR)zf) _Cm+1c m— 1f|m+2n Z(lemclmfl

a1 2 D,;—D
+hel )Tt 3¢ meiChsfhzn A= 22 Lp i,
1 - 1
FUXD)*Dmn= ~ 2Cm1€-m-1fmi2p~ 7 (€L mCm-1
| (2m+1)
Amm+1= —(Dzs iDia)+ 5 (d1+|d )|Com-1s
+C|mclfm71)flmn_z Ierlcm 1fm 2n
D;+D
FUXD)2 )= —m? 10, Alm,m:[_( 118 22 Lo tclel )
FUXTXG+XEXD) D Dggm’ }
- —idsmj,
: 2
-1 ¢ . ,c f! ! c c
2 m+1¥-m—1'm+2n" 2 Com+1Cm—1Tm- 2n
| (2m—-1)
FXRXE+XBXR )L Amm-1= —(D23+ID 13t 5 ( dy+idy) |y,
2m+1 | 2 2m—1 LAl
=-1 2 C—m—lfm+1,n~|'I Tcm—l m-1n: | (Dy;—Dyy) i | |
A =|————-Dyy|C Cr_1-
m,m—2 8 4 12|%-—m+1%m—-1
FUXEXG+XEXE) D
(2m+1) | 20 (2m-1) Hence, application of the §@)-Fourier transform to Eq.
T Com-1Tm+1nt Tcm—l m-1n- (11) and corresponding intial conditions reduc¢#$) to a set
of linear time-invariant ODE’s of the form
Collecting everything together we have
1 3 3 I df! Bl
F (Ei,z_l DiniRXjR—’_izl diXiR>f d_L:Af with f/(0)=1, . (25
' mn
min(l,m+2)
_ D A g Herel, ,, is the (2+1)X(21+1) identity matrix and the
k=maxl m—2) ~ mkTkn> banded matrix4' are of the following form fod =0,1,2,3:

AL, At At
A0= A =0, A'= «43,71 Aé,o -Aé,l ,
Al Al Al

A%, , A%, | A%,, O 0
A%, A% A%, A%, O
A?=| Af_, Ab.. Al Ab. Ads|,
0 Af ., Al Al Al
0 0 Aso A3 A3,
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A%, 5 A%, , A%, . O 0 0

A3 A3 A3 A3 0 0

-2,-3 -2,-2 -2-1 -2,0

A% 5 A%, AR AR, AR 0
A3= 0 Ag,—z Ag,—l Ag,o Ag,l Ag,z

0 0 alu Al Al 4l 4l
0 0 0 A3, A3 A3, A3
0 0 0 0 A3, A3, A3,
|
As is well known in systems theory, the solution to Eq. B df(H-(1+tX,))
(25) is of the form of a matrix exponential, XRf(H)= T ' (27)
t=0
flLy=e-4" (26)

. | . , ) for the motion group wherél=H(g) e SE(3) and
Since A' is a band-diagonal matrix fde>1, the matrix ex-

ponential can be calculated much more efficieféigher nu-

merically or symbolically for large values of than for gen-

eral matrices of dimension (2 1)X(21+1). One also

gains efficiencies in computing the matrix exponential of  X;=
LA' by observing the symmetry

o O O ©o
o » O O
|
=
|
=
o O O ©
o O O -
o O O o

Apa=(—1m At

Matrices with this kind of symmetry have eigenvalues that
occur in conjugate pairs, andxf, are the components of the
eigenvector corresponding to the complex eigenvalutaen X3=
(—1)™x_,, will be the components of the eigenvector corre-
sponding to\ [58].

In general, the numerically calculated values‘:'aﬁt) may
be substituted back into the Fourier inversion formil@) to
yield the solution forf (A;L) to any desired accuracy. In the
specific case of the Kratky-Porod model, the analytical ex- Xg=
pressions for the Fourier transform matridé6L) are of a
simple enough form to write analytically by inspection. l.e.,
sinceD1;=D,,=1/ay, D3z3—, and every other parameter

. . . | . .
in D andd is zero, the matricesi’ are all diagonal. This  These correspond to infinitesimal rotations and translations
implies that the nonzero Fourier coefficients are of the formypout the 1.2 and 3 axes.

©o o o ©
X
I
I
O o o o
O o o o
O o o o
© O O Bk

o O ~» O
o O O
o O o o

l
o O O o
o O O o
o O O o
o O O o
o O O O
S » O O

fim(L) =expLAL, ). However, form+0 the value 0D 3 In Appendix A we show that
causesf'm’m(L) to be zero and what remains is a seried in
with m=0: or xR for i=1,2,3

> (ATV,)i_5 for i=45,6
fep(AiL)= D, (21+1)e 1TV 200yl (A)

=) ’
whereXR is defined in Eq(8), and (V,);=d/da; . Observing
the definition ofu in Eq. (2), it is easy to see that-V,

=> (21+1)e '+ DL220p (cosp). R _
<o =Xg . and hence Eq.10) can be written as

A technigue analogous to that presented here is presented
in Sec. IV for solving Eq(10). (i_
JL

N =

3 3

> DRXFXR=>) dXR+XR|F=0. (29
k=1 I=1
IV. HARMONIC ANALYSIS ON THE MOTION GROUP

We now develop the tools required to solve Erf)) inan ~ With an appropriate concept of Fourier transform, the differ-
elegant way. The differential operators analogous to those iential operator§<iR acting on functions on the group SE(3)
the case of pure rotation take the form may be transformed to linear algebraic operations in Fourier
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space[59], and hence in principle Eq29) can be solved The translation matrix elements are given by the integral
using matrix methods. The remainder of this section is def60]
voted to the details of this calculation.

The unitary representation$®(a,A) of SE(3),which act (hL;rstS(aJ)hlm J=[1"m"| p,s|l,m](a)
on functionsg(p) e L?(S?) with the usual inner product, are

. m (27 ,
defined by[60,59 ZJ J le _ (cos)

0 0 ’
[US(a,A)pl(p)=e P aA(R, ARy -15) (A 'p), o —
(30) xe l(M*s)dg=ipaqL (cosd)
xeM9)¥singdedeg. (34)

where Ae SO(3) R, is the rotation matrix which converts

(0,0p)" to anype R® with |p|=p, andA, are representa-

tions of SO(2) enumerated bg=0,=1,+2,... .(See Ap-

pendix B for a detailed explanation of these quantities.
Each representation, characterizedy|p| ands is ir-

reducible [they, however, become reducible if we restrict I

SE(3) to SO(3),.e., when|a|=0]. They are unitary, be- US m(a,A;p):_E [17,m'|p.s]| I,j](a)U}m(A).

cause (U(a,A) ¢1,U%(a,A) ¢,)=(¢1,¢,). The set of all o j=-1

such representations is also complete. (35
Representations(30), which we denote below by

U3(g,p), satisfy the homomorphism properties B. Fourier transform

Finally, using the group propert1), the matrix elements of
the unitary representatiotd®(g,p) (30) (for s=0,*+1,
+2,...) areexpressed as

Here we review the definition of the Fourier transform of
US(91°92,p) =U%(91,p)- U%(g2,p), functionsF(a,A) e L2(SE(3)). To define an invertible Fou-
rier transform for functions on SE(3) we have to use a com-
where - is the motion group operation and denotes the plete orthogonal basis for functions on the motion group.
composition of linear operators. Proofs for the completeness and orthogonality of matrix el-
ements(35) can be found if60,59. Hence, using the uni-
tary representationd(g,p) (30) (for s=0,£1,=2 ...), the
Fourier transform of functions on the motion group may be
To obtain the matrix elements of the unitary representagefined as follows.
tions we use the group property Definition. Given a complex-valued functioRi(a,A) on
US(a.A)=US(al)- US(0.A). 31) SE(3), theFourier transform is the matrix-valued function

A. Matrix elements

The basis eigenfunctions of the irreducible representations FF)=f(p)= LE(S)F(g)U(gl;p)dg,
(30) of SE(3) may be enumerated by the integer numbers

I,m (for eachs andp). The range for thé,m,s indices are  \yhere g=(a,A) e SE(3) dg=dA d®a, and U(g;p) is the

I=[s[;1=|m|. _ _ unitary matrix with element¢35).
The basis functions may be expressed in the fi660 The matrix elements of the transform are given in terms
‘ of matrix elementg35) as
hi o 6, ) = Q% (cosh) /(M 9¢ (32
where Py m(P)= fSE(S)F(a,A)Uﬁm;I,vm,(a,A;p) dA da,
(36)
[ _ I-s 21+1 where we have used the unitary property.
Q_gm(cosh)=(—1) - Psnlcoso), _ : )
The inverse Fourier transform recovdiég) from F(p)
as[59]
and generalized Legendre functi0ﬁ$ Jcos#) are given in
Eq (13) _qa 1 0 . )
It may be shown that these basis functions F(9)=F *(F)= FJ Tr[F(p)U(g,p)] p=dp.
are transformed under rotations mo 37)

hi {P) —A4(Q(p.A)) hry, (A 'p) as[59]
In component form this is written as

|
(US0A) h 9 (P)= 2 UL (Ahhdp), (33 e e
n=-1 F(a,A)=—

|
1 0
S > 2 2 > > | p4dp
297¢ s=—» 1=l 1= Sl m'=—1” m=-1Jo
whereU!, . (A) are matrix elements of the transposed SO(3) . s
IUR’s in Eq. (12). XEL i m (P g m(@ACR). (38)
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We note that as a direct result of Eq$4), (35), and the dEs .
above inversion formula, I=BSFS, (43
1 where
F(aA)dA—— E 2 p dp
SO(3) 27 =0 m'=—1" 3
~ s__ YA, s
XF8’0;|r’m/(p)[|,,m’|p,0| 0,0](a) B 2 k,IE:l leu (lep)u (Xkyp)

If this distribution of end positions is then integrated over the 3

surface of a sphere with radias=|al, the result is the end- +|21 diu®(X;,p) —us(Xs,p).
to-end distance distribution: -
In principle, F(a,A;L) is then found by simply substituting
_f f F(au,A)dudA IES(p;L)=epr_BS)_ into the SE(3) Fourier inversion for-
s?Js0(3) mula (38). In practice, however, exponentiation of a nondi-
agonal infinite-dimensional matrix poses some difficulties
that need to be addressed. This is the subject of the next
:_a J' p dp FOO O&p [010|p10| OrOJ(a) (39) section.
Explicitly, for i=1,2,3 we have
It is easy to verify that[0,0|p,00,0](a)=J.pa)
=sin(pa)/pa. These expressions provide a means of address- us(X: ,p)= d S (0, exdtXi1P) |0
ing PDF’s of end-to-end relative position and end-to-end dis- a dt ~1mihm
tance when knowledge of orientation is not critical.

d |
= 5|,|'aUmr,m(eXF[tXi])h:o'
C. Operational Properties and Solutions of PDE’s

By the definition of the SE3)Fourier transforn¥[ -] and  where exptX;]=Q,[& ,t]. The second equality above fol-

operatorsXR reviewed in earlier subsections of this section,!ows easily from the structure of the matrix elements
one observes that Uf,,m,mm, andd/dtUI n(eX|c[tX])|t o are given explicitly in
Eqg. (23). This, together with the fact th§69]

XRET1= d X siq—1
fIXiF}—J;asﬂE[F«Pexthﬂnh—OU(g ,p)dg.

~ d
(40) U|S/‘m/;|ym(x6yp)= &Uffym’;|ym(te3il;p)|t=0

!

Hereg can be thought of ald(g) and exp(X;) is an element _ m s

~ . |pK|,m,5|/ llém’ —6|/|5m/’m
of the subgroup of SE(3) generated Xy, which for small [(1"+1)
values oft is approximated a$+tX;. By performing the

- +ipK] o 81 1—10m m>
change of variableb=geexp(X) and using the homomor- PKim 17,11 0m",m

phism property of the representatiods(-), one finds where
. d - 12_m2y (12— g2 172
FIXEEI= [ P STU%exp(t)eh ) l-oth R (i i)
SE(3) T 22— 1)1
(41)
d allows us to write the elements &*(p) as
=—[US(exp(tX;),p)]; :
dt[ ( [X |) p)]|t 0 B;sf,mf;hm:Almf,mél’,l_|pK?',m'5I’—1,I5m’,m
s(h—1 . m’s .
stg(g)F(h)U (h 'p)dh' (42) _|p|,(|,+1) 5I’I5m/,m_|pKls,m5l/,l—15m’,m
By defining
V. NUMERICAL RESULTS
~ d ~
us(Xi,p)= &[Us(exp(txi),p)]h:(), From a theoretical point of view, the solution to E43)
subject to the initial conditiond3(p;0)=1 is simply F®
we write =exdLB3(p)]. This may then be substituted into the
motion-group Fourier transform to find the PB¥g;L) for
]—'[7(iRF]=uS($(i ,p)f:S(p)_ any value ofL.

In practice, however, we must truncaf(p) at finite
Hence, Eq(29) can be transformed to the infinite system values ofs,|, andp. When the end-to-end distance PDF is of
of linear differential equations. interest, Eq(39) suggests that we need only consider0.
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We truncate atl=Lg and p=Pg, and denote the corre-
sponding finite matrix a@BO(p)]LB for 0O<p=<Pg. In the

numerical results that follow, we exponentia.t[eBo(p)]LB,

and examine the convergence of the 00;00 element
expL[B°], ,) and the behavior of the PDF found by substi-

tuting this truncated solution into E¢B9).

In the numerical results that follow, all stiffness and
length parameters are normalized by persistence length as &
[4]. The parameter is related to the temperature, Boltz-
mann constant and persistence length as

kgT
apg= 2)\ .
In our numerical results, we take=1, and assume units
such thakgT=1. For the helical wormlike chain model Ya-
makawa definef4]:

Bo=ag(l+a)™?

whereo is the Poisson ratio. As if¥], we takeay=0.5 and
o=0. In [4] the following moment of end-to-end distance
was calculated:

I B L e
- 2 e g2
2 5,2
To  4Ko 2 i
7_1_r—4[(4—1})COS(VL)—4VSIr'I(VL)] , (49
where
4+T(2) (45)
4+K(2),+7'(2)
V=(K(2)+T(2))1/2
and

r=(4+%)%

Here kg and 7y are the unperturbed values of curvature and

torsion of the helix. In our notatiofR?)={|al?).

Figure 1 shows our technique used to find the end-to-en
distance PDF for the KP model with=1 and a;=0.5.
(This is the Yamakawa model withy= ko= 79=0.) In this
numerical implementation we chogg=10"° and ko= 7
=0 in order to use our metho@vhich was derived with
nonsingular stiffness and flexibility matrige&Ve show how
the form of the PDF converges for different values of trun-
cation parameters.

Figure 2 shows the end-to-end distance PDF for th
Kratky-Porod model with.=1 for several of its parameters
and the truncation valudsg andPg. We setlL g andPg by

choosing successively higher values until the shape of th

PDF converged. For they=2 case(which is very stiff
small oscillations are still present. If we chodsg and Pg

large enough, these oscillations can be made negligibly smail

(in the L? sensg, but this requires a greater computational
burden.

C

Mend -to-| End Distance PDF for KP Model
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4

3

=05)

ol; o

— — - Ly=4;P;=100
Ly=7; P, =60
Ly=7: Py =130

8

End-to-End Distance PDF (K|

1 n n ) . 1
0.5

Normalized Distance a

FIG. 1. End-to-end distance PDF for the KP model: successive
approximations for one stiffness value.

In Figs. 3—5 we show the end-to-end distance PDF'’s for
the Yamakawa helical wormlike chain model for several pa-
rameters and compare it with the KP model for various val-
ues of normalized length. Following [4]: For HW1, «,
=2.5 andry=0.5; for HW2,ky=5.0 andr,=1.0; for HW3
ko=1.0 and 79=1.0; for HW5, x,=30.0 and o=
Clearly for smallelL, the chain is effectively stiffer, and our
Fourier method exhibits some Gibbs-type oscillations.

Figure 6 shows how the moments of the end-to-end dis-
tance PDF generated using our technique at discrete values
of L matches with the closed-form resu#4) presented in
Fig. 4.14 of{4] .

The benefit of our approach is that the PDF contains all
the information to generate any desired moment. While we
have demonstrated the compatability of our method with
theKP and helical wormlike models, our method is valid for

——- - @,=0.1(Ly=5;Py=60)
0,=05(L,=7;Py=100)
— — - 0,=1(Ly=9;P,=180)
0y=2(Ly=10;Py=250)

05
Normalized Distance a

FIG. 2. End-to-end distance PDF’s for the KP model for several
different stiffness values.
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14 F
E 4
13 E r A
E L~ HWT (L, =10; Py = 150) [ { . HW1 (L = 5; P, = 150)
12 T ;
N I :&rgzt foppaj?gg) 85 I \ _-—-- HW2(LB=5EP:=100)
1 E — — HW5(L,=8;P,=100) [ —--— HW3 (L, =5;P, = 150)
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1 £ 05|
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FIG. 3. End-to-end distance PDF for the HW and KP models FIG. 5. End-to-end distance PDF for the HW and KP models
with L=0.5. with L=2.

any second-order stiffness modélith arbitrary linear the moments of which match with moments generated using
chirality term). other techniques.
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ecules with arbitrary(though uniform local stiffness and
chirality characteristics is derived. This PDE describes a pro- APPENDIX A: THE OPERATORS XR
cess that evolves on the Euclidean motion group. Second,
analytical tools for the solution of this PDE are presented, N this appendix it will be helpful to associate each matrix
Third, we show how this analytical framework can be usedX; defined in Sec. IV with a vectorX;)" in the following
to numerically generate PDF’s of interest in polymer scienceway:
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FIG. 4. End-to-end distance PDF for the HW and KP models FIG. 6. Comparison of moments generated numerically and ana-
with L=1. lytically.
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(Xg)V=

O O O O O Bk
OO O O O +» O
o O O »r O O

. (Xe)V=

l
OO O B O O O
l
O B O O O O
R O O O O O

Given elements of SE(3) parametrizedths H(q), the
differential operator&R are calculated as

df(H- (1 +tX;))

T (A1)

XRf(H)=
t=0

By definingg®' such thatH(q+tq?")=H(q)(l +tX;), and
expanding both sides in a Taylor seriestjrone observes
that

6

- H
H+tHX=H+t>, —qf'+0(t?)
j=1 dq;

since

-d .
a5 =g (At

Differentiating with respect td and setting =0 then yields

6
S M a
X = H1—qgP,
=AM g9
or
6
< JH\V .
X))V = (Hl— !
X)V=2 (W5 ]

The 6X6 matrix with cqumns{H‘l(&H/aqj)]\/ is denoted
Jr- One then writes
™= T (X)),
which is used to calculate
6

XRf=>

i=1

gt o f
— =71 (X)V—. A2
aq & =T RV A2

Letq,,0,,q3 parametrize rotatiofi.e., the Euler anglesand
d4,05,0g parametrize translatiofi.e., the components of the
vectora). ThenJg and its inverse take the explicit forms

GREGORY S. CHIRIKJIAN AND YUNFENG WANG
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Jr O3

Jr= 05 AT

JRr o
and le=(0R As)
3

where G is the 3x 3 with zero entries andg is the matrix
relating rates of rotation parameters and angular veldaity

the body-fixed frame w=Jg[q;.0,,03]". Substitution of
these definitions into EqA2) results in Eq.(28).

APPENDIX B: HELICITY REPRESENTATIONS

In this appendix we explain the termS(RglA Ra-1p)
(which is often called a helicity representatian Eq. (30).

Let H; denote the group which leaves the paimt S? fixed.
To calculate the representations ldf, explicitly, we first

choose a particular coset representativie=e;e S?

=S0(3)/SO(2). Thevectorv is invariant with respect to
rotations from the SO(2) subgroup of &), and forthis

particular choice ofv we not only haveH;=S0(2), but
ratherH;=S0O(2).

For eachve S> we may findR, e SO(3)/SO(2),such
that

R, Vv=v.

Explicitly, this rotation matrix is the one which has an axis
pointing in the direction defined kfyx v, and has a rotation

angle whose sin igvxV||. In general, the rotatiofR(a,b)
which transforms a unit vecta into the unit vectom,

b=R(a,b)a,
is defined by

(1-ab)
oz~ Y

R(a,b)=e‘=1+C+
wherec=axb andC is defined byCx=cXxx. This follows
easily from the fact thafax b||=sing,, and a-b=cosé,,
where 0<6,,< is the counterclockwise measured angle
from ato b as measured in the direction defineddyence,
in the current context,

Rv: R(\”/’V):ematr[(/x ],
where mafrc] is the skew-symmetric matrix such that
(matf c])x=cXxx.

For any Ae SO(3) it follows from the definition oR,
that

Ry 1,V=A"1v.

Multiplying both sides byA, making the replacement
=R,V on the right-hand-side, and multiplying both sides by

R, ! means

(R, YA Ry-1,) V=V.

Therefore,
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A and
Q(V,A)=(R, ' ARy-1,) eH;. R .
matf A~ (Av) X v}]=A"matr[ (Av) X V]A.

The representations ¢f; may be taken to be of the form ) . ) ) ] )
Since conjugation commutes with the matrix exponential,

Ag:p—€5?, 0<¢p=<2m, it follows that

a?ds=0,i 1,=2,....Thisis just the usual Fourier series on RAfl\,:A*1R(A\7,v)A=A*lematr[(AQ)leA_
S'=S0(2).
We now derive the form ofd(v,A) explicitly. At first ~ Substitution of this into the definition d@(v,A), and using
sight this would appear to be a complicated function ahd  the fact that
A. We show that this is not as complicated as one might R R
believe. R, '=exp{—matr[ (vXv)]}=exp{matf (vXV)]},
We begin by observing that
one finds
Ra-1,= R(\?,A_lV) — ematr[\A/X(A’lv)]. A R
Q(V,A) — ema'[r[(v>< V] ematr[(Av)Xv]A_ (BZ)
Using general rules for cross-products, one finds that
While the derivation here is for unit vectoxs everything
vX (A" v)=A"(AV) X V)] follows in exactly the same way fqu= pv.
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