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Conformational statistics of stiff macromolecules as solutions to partial differential equations
on the rotation and motion groups

Gregory S. Chirikjian and Yunfeng Wang
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Partial differential equations~PDE’s! for the probability density function~PDF! of the position and orien-
tation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The
Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-
Siggia models are examples of stiffness models to which the present formulation is applied. The solution
technique uses harmonic analysis on the rotation and motion groups to convert PDE’s governing the PDF’s of
interest into linear algebraic equations which have mathematically elegant solutions.

PACS number~s!: 36.20.Ey, 87.16.Ac, 05.10.2a, 02.30.Jr
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I. INTRODUCTION

A quantity of importance in polymer science is the pro
ability density function describing the relative occurrence
positions and orientations of the distal end of the chain fo
given position and orientation of the proximal end@1–4#. For
flexible chains, the orientation distribution quickly reach
its limiting form, which is a constant over all orientation
@2#. Hence, the distribution of end positions~without regard
to orientation! has been the subject of intensive study ov
the past half century~see, e.g.,@5,3,6# for complete reviews
of the literature!, and remains of interest to the present d
@7,8#.

In the case of stiff chains~e.g., DNA!, a much greater
length is required for the orientation distribution of the dis
end relative to the proximal one to reach its limiting form
and it cannot be considered constant when considering
tively small segments of the chain. Hence, it is important
characterize the evolution of a joint positional and orien
tional probability density function in such cases.

The statistical mechanics of DNA and other stiff~worm-
like! chains has received much attention in the literature~see,
e.g., @9–29#!. In particular, stiff polymer theories based o
diffusion processes and path integral techniques can
found in @30–33#

Experimental measurements of DNA stiffness parame
have been reported in@34–38,4#. Efforts to characterize in-
tegrals of the joint positional and orientational probabil
density function~PDF! over many of its arguments can b
found in@25,39#, and the whole distribution in the case of th
helical wormlike chain can be found in@4#. DNA elastic
properties and experimental measurements of DNA ela
twist/stretch coupling have also been reported in@40–44#.

The approach presented here solves the most genera
extensible case, and draws on a number of group-theore
notations. The utility of our approach is that it is so gene
that it is valid for any second-order stiffness and chiral
model. As an example of this generality, we show later in
paper how the Kratky-Porod@45–47#, Yamakawa@4#, and
Marko-Siggia@48# models all fit within our framework. We
note that while our model is applicable to DNA, it is n
limited to this case. In analogy with the way the Kratk
Porod~KP! model for stiff polymers was introduced prior t
the discovery of DNA, we expect our model to be applica
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to numerous manmade stiff molecules to be invented in
twenty-first century.

Orientations are described as elements of the rota
group, SO(3)@the set of 333 real matrices satisfyingATA
5I and det(A)51]. Translations~and positions! are de-
scribed as elements of three-space:aPR3. The Euclidean
motion group~or special Euclidean group!, SE(3), is the
semidirect product ofR3 with the special orthogonal group
SO(3). Wedenote elements of SE(3) asg5(a,A)PSE(3),
where APSO(3) andaPR3. The group law is written as
g1+g25(a11A1a2 ,A1A2) and g215(2ATa,AT). Any ele-
ment of SE(3) can be written as the product of a pure tra
lation and pure rotation as (a,A)5(a,I )+(0,A).

One may represent any element of SE(N) as an (N11)
3(N11) homogeneous transformation matrix of the form

H~g!5S A a

0T 1
D .

Clearly, H(g1)H(g2)5H(g1+g2) and H(g21)5H21(g),
and the mappingg→H(g) is an isomorphism betwee
SE(N) and the set of homogeneous transformation matric
and so we henceforth make no distinction betweeng and
H(g).

When describing a frame of reference or motion@which
are both elements of SE(3)], the translations~or positions!
will be parametrized in either Cartesian or spherical coor
nates,

a5S a1

a2

a3

D 5S a sinu cosf

a sinu sinf

a cosu
D .

Rotations~or orientations! are parametrized usingZXZ Euler
angles,

A~a,b,g!5V rot @e3 ,a#V rot @e1 ,b#V rot @e3 ,g#,
880 ©2000 The American Physical Society
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where V rot@ei ,w# denotes the rotation matrix describin
counterclockwise rotation byw about the natural basis vecto
ei which has elements (ei) j5d i j .

II. MODEL FORMULATION

As is often the case in theoretical polymer science, an
gies between the motion of a particle along a path and
motion of an observer traversing a polymer chain allow
tools from classical and quantum mechanics to be applie

In particular, a number of authors have derived poten
energies of bending and/or twisting of a stiff chain that are
the form

E5E
0

L

U@v~s!#ds,

whereL is the length of the macromolecule and

U5
1

2
vTBv2bTv1b8. ~1!

Here B5BTPR333 is a positive semidefinite matrix,b
PR3, andb8PR. v is the ‘‘angular velocity’’ of a frame of
reference which traverses the macromolecule, coincid
with each frame@a(s),A(s)# affixed to the backbone of th
molecule for each value of arclengths. This ‘‘angular veloc-
ity’’ is the dual vector of the skew symmetric matrixATȦ,
where the overdot denotesd/ds. That is,v3x5ATȦx for
all xPR3. This is completely analogous to the definition
angular velocity of a rigid body as seen in the body fix
frame with s taking the place of time. Henceforth, we wi
use the notationU5U(v)5U(A,Ȧ) to denote the fact tha
the bending energy is a function of the rotation matrix and
derivative through of the definition ofv.

As well-known examples of Eq.~1! from the polymer
science literature, consider the following.

The Kratky-Porod model@1,45#:

B5S a0 0 0

0 a0 0

0 0 0
D , b5S 0

0

0
D , b850.

The Yamakawa model@4#:

B5S a0 0 0

0 a0 0

0 0 b0

D , b5S 0

a0k0

b0t0

D ,

b85
1

2
~b0t0

21a0k0
2!.

The Marko-Siggia DNA model@48#:

B5S A8 0 B

0 A 0

B 0 C
D , b5S Bv0

0

Cv0

D , b85
1

2
Cv0

2 .

The revised Marko-Siggia model@49#:
o-
e

r
.
l
f

g

s

B5S A1B2/C 0 B

0 A 0

B 0 C
D , b5S Bv0

0

Cv0

D ,

b85
1

2
Cv0

2 .

Other modifications of these models may be made to incl
stretching effects@50#, though the current presentation is r
stricted to the inextensible case.

We now generate the diffusion equation that governs
evolution of the positional and orientation probability dens
function F(a,A;s) for all values of 0<s<L. Assuming that
the proximal end is fixed at the frame (0,I ), thenF(a,A;0)
5d(a)d(A). Here the Dirac delta function on the motio
group is written as the product of those forR3 and SO(3).

Under the constraint that the molecule is inextensible, a
all the frames of reference are attached to the backbone
their localz axis pointing in the direction of the next frame
one observes

a~L !5E
0

L

u~s!ds and u~s!5A~s!e3 . ~2!

Hence, the PDF of interest can be formulated as the follo
ing path integral over the rotation group:

F~a,A;L !5E
A(0)5I

A(L)5A

dS a~L !2E
0

L

u~s!dsD
3expF2E

0

L

U~A,Ȧ!dsGD@A~s!#, ~3!

where it is assumed that the bending energyU is measured in
units of kBT. Path integration over the rotation group h
been studied extensively in the literature in the context
quantum mechanics~see @51–54# and references therein!.
Our notation and formulation follows that in@4#.

Using the classical Fourier transform pair

f̂ ~k!5E
R3

f ~a!e2 ik•ad3a

f ~a!5
1

~2p!3ER3
f̂ ~k!eik•ad3k, ~4!

one writes

F̂~k,A;L !5E
A(0)5I

A(L)5A

expF2E
0

L

~ ik•u1U !dsGD@A~s!#.

Treating the innermost integrand asi times a Lagrangian
with kinetic and potential energies,

T5
1

2
i vTBv

and

V5 i @b•v2b8#1k•u
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~the constantb8 can be ignored! one calculates the momen
and Hamiltonian in the usual way, which for this case me

pk5
]L

]vk
→H52 i F1

2
pTB21pG1bTB21p1k•u. ~5!

Here and henceforthB is assumed to be positive definite~and
hence invertible!.

The quantization

pi52 iXi
R ~6!

is used, where the differential operatorsXi
R acting on func-

tions on the rotation group are defined as

Xi
Rf ~A!5

d f~A•V rot @ei ,t# !

dt U
t50

5
d f@A~ I 1tXi !#

dt U
t50

,

~7!

where

X15S 0 0 0

0 0 21

0 1 0
D ,

X25S 0 0 1

0 0 0

21 0 0
D ,

X35S 0 21 0

1 0 0

0 0 0
D .

The superscriptR in Xi
R denotes the fact that the infinitesim

rotationI 1tXi is applied on the right of the argument of th
function. This corresponds to an infinitesimal motion relat
to the body-fixed frame in a rigid body.

Using the ZXZ Euler angles (a,b,g) these operators
have the explicit form

X1
R52cotb sing

]

]g
1

sing

sinb

]

]a
1cosg

]

]b
,

X2
R52cotb cosg

]

]g
1

cosg

sinb

]

]a
2sing

]

]b
, ~8!

X3
R5

]

]g
.

The Schro¨dinger-like equation corresponding to th
Hamiltonian~5! and quantization~6! is

i
]F̂

]L
5HF̂.

This takes the explicit form
s S ]

]L
2

1

2 (
k,l 51

3

~Blk
21Xl

RXk
R22Blk

21bkXl
R!1 ik•uD F̂50.

~9!

Henceforth we will use the quantitiesD5B21 and d5
2B21b.

The classical Fourier inversion formula~4! then converts
~9! to

S ]

]L
2

1

2 (
k,l 51

3

DlkXl
RXk

R2(
l 51

3

dlXl
R1u•¹aDF50,

~10!

which is a partial differential equation~PDE! on the motion
group, SE(3). The initial conditions are F(a,A;0)
5d(a)d(A).

IntegratingF over all positions,aPR3, results in a purely
orientational density function:

f ~A;s!5E
R3

F~a,A;s!d3a.

Performing this integration over the initial conditions an
Eq. ~10! results in the SO(3)-diffusion equation

S ]

]L
2

1

2 (
k,l 51

3

DlkXl
RXk

R2(
l 51

3

dlXl
RD f 50 ~11!

with initial conditions f (A;0)5d(A).
Equation~11! is a partial differential equation that gov

erns the evolution of the functionf on the rotation group
SO(3). It issolved in series form in Sec. III using techniqu
from noncommutative harmonic analysis. Equations sim
to Eq. ~11! have been derived in, e.g.,@36,37#. Our goal in
this paper is to solve both Eq.~11! and~10! in a numerically
efficient and mathematically elegant way.

III. HARMONIC ANALYSIS ON THE ROTATION GROUP

The matrix elements of the irreducible unitary represen
tions IUR’s of SO(3) are given to within an arbitrary unita
transformation by@55–57#:

Umn
l
„g~a,b,g!…5~21!n2me2 i (ma1ng)Pmn

l ~cosb!
~12!

where

Pmn
l ~cosb!5F ~ l 2m!! ~ l 1m!!

~ l 2n!! ~ l 1n!! G1/2

3sinm2n
b

2
cosm1n

b

2
Pl 2m

(m2n,m1n)~cosb!

~13!

andPl
m,n(•) are the Jacobi polynomials.

The matricesUl with entriesUmn
l are (2l 11)3(2l 11)

dimensional, and the indicies take the range of values2 l
<m,n< l . These representation matrices posess the ho
morphism and orthogonality properties
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Ul~A1A2!5Ul~A1!Ul~A2! ~14!

and

E
SO(3)

Um8n8
l 8 ~A!Umn

l ~A! dA5
dm8m dn8n d l 8 l

~2l 11!
. ~15!

Any square-integrable function on SO(3) can be e
panded in a Fourier series as

f ~A!5(
l 50

`

~2l 11! (
m52 l

l

(
n52 l

l

f̂ mn
l Unm

l ~A!

5(
l 50

`

~2l 11!Tr~ f̂ lUl !, ~16!

where the entries of the Fourier transform matrixF( f ) l5 f̂ l

are defined as

f̂ mn
l 5E

SO(3)
f ~A!Umn

l ~A21!dA. ~17!

Here dA5(1/8p2)sinbdadbdg is the invariant integration
measure for SO(3) normalized so that*SO(3)dA51. Hence,
by expanding the PDF in the PDE in Eq.~11! into a Fourier
series on SO(3), the solution can be obtained once on
knows how the differential operatorsXi

R transform the ma-
trix elementsUm,n

l (A). In fact, this is well known, and can
be found in@55,56# ~adjusted for the differing definitions o
Umn

l ) as

X1
RUmn

l 5
1

2
c2n

l Um,n21
l 2

1

2
cn

l Um,n11
l , ~18!

X2
RUmn

l 5
1

2
ic2n

l Um,n21
l 1

1

2
icn

l Um,n11
l , ~19!

X3
RUmn

l 52 inUmn
l , ~20!

where cn
l 5A( l 2n)( l 1n11) for l>unu and cn

l 50 other-
wise. From this definition it is clear thatck

k50,c2(n11)
l

5cn
l ,cn21

l 5c2n
l , and cn22

l 5c2n11
l . Equations~18!–~20!

follow from Eq. ~14! and the fact that

d

dt
Umn

l
„V rot~e1 ,t !…u t505

1

2
c2n

l dm11,n2
1

2
cn

l dm21,n ,

~21!

d

dt
Umn

l
„V rot~e2 ,t !…u t505

i

2
c2n

l dm11,n1
i

2
cn

l dm21,n ,

~22!

d

dt
Umn

l
„V rot~e3 ,t !…u t5052 indm,n . ~23!

By repeated application of these rules one finds
-

~X1
R!2Umn

l 5
1

4
c2n

l c2n11
l Um,n22

l 2
1

4
~c2n

l cn21
l

1cn
l c2n21

l !Umn
l 1

1

4
cn

l cn11
l Um,n12

l ,

~X2
R!2Umn

l 52
1

4
c2n

l c2n11
l Um,n22

l 2
1

4
~c2n

l cn21
l

1cn
l c2n21

l !Umn
l 2

1

4
cn

l cn11
l Um,n12

l ,

~X3
R!2Umn

l 52n2Umn
l ,

X1
RX2

RUm,n
l 5

i

4
c2n

l c2n11
l Um,n22

l 1
i

4
~2c2n

l cn21
l

1cn
l c2n21

l !Um,n
l 2

i

4
cn

l cn11
l Um,n12

l ,

X2
RX1

RUm,n
l 5

i

4
c2n

l c2n11
l Um,n22

l 1
i

4
~c2n

l cn21
l

2cn
l c2n21

l !Um,n
l 2

i

4
cn

l cn11
l Um,n12

l ,

X1
RX3

RUm,n
l 5 i

n

2
~2c2n

l Um,n21
l 1cn

l Um,n11
l !,

X3
RX1

RUm,n
l 52 i

n21

2
c2n

l Um,n21
l 1 i

n11

2
cn

l Um,n11
l ,

X3
RX2

RUm,n
l 5

~n21!

2
c2n

l Um,n21
l 1

~n11!

2
cn

l Um,n11
l ,

X2
RX3

RUm,n
l 5

n

2
~c2n

l Um,n21
l 1cn

l Um,n11
l !.

As a direct result of the definition of the SO(3)-Fourier
inversion formula~16!, one observes that if a differentia
operatorX transformsUmn

l as

XUm,n
l 5x~n!Um,n1p

l ,

then there is a corresponding operational property of
Fourier transform

F~X f !m,n
l 5x~m2p! f̂ m2p,n

l . ~24!

We use this to write

F~X1
Rf !mn

l 5
1

2
c2m21

l f̂ m11,n
l 2

1

2
cm21

l f̂ m21,n
l ,

F~X2
Rf !mn

l 5
1

2
ic2m21

l f̂ m11,n
l 1

1

2
icm21

l f̂ m21,n
l ,

F~X3
Rf !mn

l 52 im f̂mn
l ,
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F„~X1
R!2f …mn

l 5
1

4
cm11

l c2m21
l f̂ m12,n

l 2
1

4
~c2m

l cm21
l

1cm
l c2m21

l ! f̂ mn
l 1

1

4
c2m11

l cm21
l f̂ m22,n

l ,

F„~X2
R!2f …mn

l 52
1

4
cm11

l c2m21
l f̂ m12,n

l 2
1

4
~c2m

l cm21
l

1cm
l c2m21

l ! f̂ mn
l 2

1

4
c2m11

l cm21
l f̂ m22,n

l ,

F„~X3
R!2f …mn

l 52m2 f̂ mn
l ,

F„~X1
RX2

R1X2
RX1

R! f …m,n
l

5
i

2
cm11

l c2m21
l f̂ m12,n

l 2
i

2
c2m11

l cm21
l f̂ m22,n

l ,

F„~X1
RX3

R1X1
RX3

R! f …m,n
l

52 i
2m11

2
c2m21

l f̂ m11,n
l 1 i

2m21

2
cm21

l f̂ m21,n
l ,

F„~X3
RX2

R1X2
RX3

R! f …m,n
l

5
~2m11!

2
c2m21

l f̂ m11,n
l 1

~2m21!

2
cm21

l f̂ m21,n
l .

Collecting everything together we have

F XS 1

2 (
i , j 51

3

Di j Xi
RXj

R1(
i 51

3

diXi
RD f C

mn

l

5 (
k5max(2 l ,m22)

min(l ,m12)

Am,k
l f̂ k,n

l ,
where

Am,m12
l 5F ~D112D22!

8
1

i

4
D12Gcm11

l c2m21
l ,

Am,m11
l 5F ~2m11!

4
~D232 iD 13!1

1

2
~d11 id2!Gc2m21

l ,

Am,m
l 5F2

~D111D22!

8
~c2m

l cm21
l 1cm

l c2m21
l !

2
D33m

2

2
2 id3mG ,

Am,m21
l 5F ~2m21!

4
~D231 iD 13!1

1

2
~2d11 id2!Gcm21

l ,

Am,m22
l 5F ~D112D22!

8
2

i

4
D12Gc2m11

l cm21
l .

Hence, application of the SO(3)-Fourier transform to Eq.
~11! and corresponding intial conditions reduces~11! to a set
of linear time-invariant ODE’s of the form

d f̂ l

dL
5A l f̂ l with f̂ l~0!5I 2l 11 . ~25!

Here I 2l 11 is the (2l 11)3(2l 11) identity matrix and the
banded matrixA l are of the following form forl 50,1,2,3:
A 05A 0,0
0 50, A 15S A 21,21

1 A 21,0
1 A 21,1

1

A 0,21
1 A 0,0

1 A 0,1
1

A 1,21
1 A 1,0

1 A 1,1
1
D ,

A 25S A 22,22
2 A 22,21

2 A 22,0
2 0 0

A 21,22
2 A 21,21

2 A 21,0
2 A 21,1

2 0

A 0,22
2 A 0,21

2 A 0,0
2 A 0,1

2 A 0,2
2

0 A 1,21
2 A 1,0

2 A 1,1
2 A 1,2

2

0 0 A 2,0
2 A 2,1

2 A 2,2
2

D ,
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A 35S A 23,23
3 A 23,22

3 A 23,21
3 0 0 0 0

A 22,23
3 A 22,22

3 A 22,21
3 A 22,0

3 0 0 0

A 21,23
3 A 21,22

3 A 21,21
3 A 21,0

3 A 21,1
3 0 0

0 A 0,22
3 A 0,21

3 A 0,0
3 A 0,1

3 A 0,2
3 0

0 0 A 1,21
3 A 1,0

3 A 1,1
3 A 1,2

3 A 1,3
3

0 0 0 A 2,0
3 A 2,1

3 A 2,2
3 A 2,3

3

0 0 0 0 A 3,1
3 A 3,2

3 A 3,3
3

D .
q

o

a
e

e

e
ex

e.
r

rm

n

n

e

ons

er-
)
rier
As is well known in systems theory, the solution to E
~25! is of the form of a matrix exponential,

f̂ l~L !5eLA l
. ~26!

SinceA l is a band-diagonal matrix forl .1, the matrix ex-
ponential can be calculated much more efficiently~either nu-
merically or symbolically! for large values ofl than for gen-
eral matrices of dimension (2l 11)3(2l 11). One also
gains efficiencies in computing the matrix exponential
LAl by observing the symmetry

A m,n
l 5~21!m2nA 2m,2n

l .

Matrices with this kind of symmetry have eigenvalues th
occur in conjugate pairs, and ifxm are the components of th
eigenvector corresponding to the complex eigenvaluel, then
(21)mx̄2m will be the components of the eigenvector corr
sponding tol̄ @58#.

In general, the numerically calculated values off̂ l(L) may
be substituted back into the Fourier inversion formula~16! to
yield the solution forf (A;L) to any desired accuracy. In th
specific case of the Kratky-Porod model, the analytical
pressions for the Fourier transform matricesf̂ l(L) are of a
simple enough form to write analytically by inspection. I.
sinceD115D2251/a0 , D33→`, and every other paramete
in D and d is zero, the matricesA l are all diagonal. This
implies that the nonzero Fourier coefficients are of the fo
f̂ m,m

l (L)5exp(LA m,m
l ). However, formÞ0 the value ofD33

causesf̂ m,m
l (L) to be zero and what remains is a series il

with m50:

f KP~A;L !5(
l 50

`

~2l 11!e2 l ( l 11)L/2a0U0,0
l ~A!

5(
l 50

`

~2l 11!e2 l ( l 11)L/2a0Pl~cosb!.

A technique analogous to that presented here is prese
in Sec. IV for solving Eq.~10!.

IV. HARMONIC ANALYSIS ON THE MOTION GROUP

We now develop the tools required to solve Eq.~10! in an
elegant way. The differential operators analogous to thos
the case of pure rotation take the form
.

f

t

-

-

,

ted

in

X̃i
Rf ~H !5

d f„H•~11tX̃i !…

dt
U

t50

~27!

for the motion group whereH5H(g)PSE(3) and

X̃15S 0 0 0 0

0 0 21 0

0 1 0 0

0 0 0 0

D , X̃25S 0 0 1 0

0 0 0 0

21 0 0 0

0 0 0 0

D ,

X̃35S 0 21 0 0

1 0 0 0

0 0 0 0

0 0 0 0

D , X̃45S 0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

D ,

X̃55S 0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

D , X̃65S 0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

D .

These correspond to infinitesimal rotations and translati
about the 1,2, and 3 axes.

In Appendix A we show that

X̃i
R5H Xi

R for i 51,2,3

~AT¹a! i 23 for i 54,5,6
~28!

whereXi
R is defined in Eq.~8!, and (¹a) i5]/]ai . Observing

the definition ofu in Eq. ~2!, it is easy to see thatu•¹a

5X̃6
R , and hence Eq.~10! can be written as

S ]

]L
2

1

2 (
k,l 51

3

DlkX̃l
RX̃k

R2(
l 51

3

dlX̃l
R1X̃6

RDF50. ~29!

With an appropriate concept of Fourier transform, the diff
ential operatorsX̃i

R acting on functions on the group SE(3
may be transformed to linear algebraic operations in Fou
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space@59#, and hence in principle Eq.~29! can be solved
using matrix methods. The remainder of this section is
voted to the details of this calculation.

The unitary representationsUs(a,A) of SE(3),which act
on functionsf(p)PL2(S2) with the usual inner product, ar
defined by@60,59#

@Us~a,A!f#~p!5e2 ip•a Ds~Rp
21A RA21p! f~A21p!,

~30!

where APSO(3),Rp is the rotation matrix which convert
(0,0,p)T to any pPR3 with upu5p, and Ds are representa
tions of SO(2) enumerated bys50,61,62, . . . . ~See Ap-
pendix B for a detailed explanation of these quantities.!

Each representation, characterized byp5upu and s is ir-
reducible @they, however, become reducible if we restr
SE(3) to SO(3),i.e., whenuau50]. They are unitary, be-
cause„Us(a,A)f1 ,Us(a,A)f2…5(f1 ,f2). The set of all
such representations is also complete.

Representations~30!, which we denote below by
Us(g,p), satisfy the homomorphism properties

Us~g1+g2 ,p!5Us~g1 ,p!•Us~g2 ,p!,

where + is the motion group operation and• denotes the
composition of linear operators.

A. Matrix elements

To obtain the matrix elements of the unitary represen
tions we use the group property

Us~a,A!5Us~a,I !•Us~0,A!. ~31!

The basis eigenfunctions of the irreducible representat
~30! of SE(3) may be enumerated by the integer numb
l ,m ~for eachs and p). The range for thel ,m,s indices are
l>usu; l>umu.

The basis functions may be expressed in the form@56,60#

hm s
l ~u,f!5Qs,m

l ~cosu! ei (m1s)f ~32!

where

Q2s,m
l ~cosu!5~21! l 2sA2l 11

4p
Ps m

l ~cosu!,

and generalized Legendre functionsPm s
l (cosu) are given in

Eq. ~13!.
It may be shown that these basis functio

are transformed under rotation
hm s

l (p) →Ds„Q(p,A)… hm s
l (A21p) as @59#

„Us~0,A! hm s
l

… (p…5 (
n52 l

l

Un m
l ~A!hn s

l ~p!, ~33!

whereUn m
l (A) are matrix elements of the transposed SO(

IUR’s in Eq. ~12!.
-

-

s
rs

)

The translation matrix elements are given by the integ
@60#

„hm8s
l 8 ,Us~a,I !hm s

l
…5@ l 8,m8 u p,su l ,m#~a!

5E
0

p E
0

2p

Qs,m8
l 8 ~cosu!

3e2 i (m81s)f e2 ip•a Qs,m
l ~cosu!

3ei (m1s)f sinu du df. ~34!

Finally, using the group property~31!, the matrix elements of
the unitary representationUs(g,p) ~30! ~for s50,61,
62, . . . ) areexpressed as

Ul 8,m8; l ,m
s

~a,A;p!5 (
j 52 l

l

@ l 8,m8 u p,s u l , j #~a!U j m
l ~A!.

~35!

B. Fourier transform

Here we review the definition of the Fourier transform
functionsF(a,A)PL2

„SE(3)…. To define an invertible Fou-
rier transform for functions on SE(3) we have to use a co
plete orthogonal basis for functions on the motion grou
Proofs for the completeness and orthogonality of matrix
ements~35! can be found in@60,59#. Hence, using the uni-
tary representationsU(g,p) ~30! ~for s50,61,62 . . . ), the
Fourier transform of functions on the motion group may
defined as follows.

Definition. Given a complex-valued functionF(a,A) on
SE(3), theFourier transform is the matrix-valued function

F~F !5 f̂ ~p!5E
SE(3)

F~g!U~g21;p!dg,

where g5(a,A)PSE(3),dg5dA d3a, and U(g;p) is the
unitary matrix with elements~35!.

The matrix elements of the transform are given in ter
of matrix elements~35! as

F̂ l 8,m8; l ,m
s

~p!5E
SE(3)

F~a,A!Ul ,m; l 8,m8
s

~a,A;p! dA d3a,

~36!

where we have used the unitary property.
The inverse Fourier transform recoversF(g) from F̂(p)

as @59#

F~g!5F 21~ F̂ !5
1

2p2E0

`

Tr @ F̂~p!U~g,p!# p2 dp.

~37!

In component form this is written as

F~a,A!5
1

2p2 (
s52`

`

(
l 85usu

`

(
l 5usu

`

(
m852 l 8

l 8

(
m52 l

l E
0

`

p2dp

3F̂ l ,m; l 8,m8
s

~p!Ul 8,m8; l ,m
s

~a,A;p!. ~38!



he
-

es
is

n

-

m

-
i-

ies
next

l-
ts

e

of

PRE 62 887CONFORMATIONAL STATISTICS OF STIFF . . .
We note that as a direct result of Eqs.~14!, ~35!, and the
above inversion formula,

E
SO(3)

F~a,A!dA5
1

2p2 (
l 850

`

(
m852 l 8

l 8 E
0

`

p2 dp

3F̂0,0;l 8,m8
0

~p!@ l 8,m8 up,0u 0,0#~a!.

If this distribution of end positions is then integrated over t
surface of a sphere with radiusa5uau, the result is the end
to-end distance distribution:

a2

2p2ES2
E

SO(3)
F~au,A!dudA

5
2

p
a2E

0

`

p2 dp F̂0,0;0,0
0 ~p!@0,0up,0u 0,0#~a!. ~39!

It is easy to verify that @0,0up,0u 0,0#(a)5J1/2(pa)
5sin(pa)/pa. These expressions provide a means of addr
ing PDF’s of end-to-end relative position and end-to-end d
tance when knowledge of orientation is not critical.

C. Operational Properties and Solutions of PDE’s

By the definition of the SE(3)Fourier transformF@•# and
operatorsX̃i

R reviewed in earlier subsections of this sectio
one observes that

F @X̃i
RF#5E

SE(3)

d

dt
@F„g+exp~ tX̃i !…#u t50Us~g21,p!dg.

~40!

Hereg can be thought of asH(g) and exp(tX̃i) is an element
of the subgroup of SE(3) generated byX̃i , which for small
values of t is approximated asI 1tX̃i . By performing the
change of variablesh5g+exp(tX̃i) and using the homomor
phism property of the representationsUs(•), one finds

F @X̃i
RF#5E

SE(3)
F~h!

d

dt
@Us

„exp~ tX̃i !+h21,p…#u t50dh

~41!

5
d

dt
@Us

„exp~ tX̃i !,p…#u t50

3E
SE(3)

F~h!Us~h21,p!dh. ~42!

By defining

us~X̃i ,p!5
d

dt
@Us

„exp~ tX̃i !,p…#u t50 ,

we write

F @X̃i
RF#5us~X̃i ,p!F̂s~p!.

Hence, Eq.~29! can be transformed to the infinite syste
of linear differential equations.
s-
-

,

dF̂s

dL
5B sF̂s, ~43!

where

B s5
1

2 (
k,l 51

3

Dlkus~X̃l ,p!us~X̃k ,p!

1(
l 51

3

dlu
s~X̃l ,p!2us~X̃6 ,p!.

In principle, F(a,A;L) is then found by simply substituting
F̂s(p;L)5exp(LB s) into the SE(3) Fourier inversion for
mula ~38!. In practice, however, exponentiation of a nond
agonal infinite-dimensional matrix poses some difficult
that need to be addressed. This is the subject of the
section.

Explicitly, for i 51,2,3 we have

us~X̃i ,p!5
d

dt
Ul 8,m8; l ,m

s
~0,exp@ tXi #;p!u t50

5d l ,l 8

d

dt
Um8,m

l
~exp@ tXi # !u t50 ,

where exp@tXi#5Vrof @ei ,t#. The second equality above fo
lows easily from the structure of the matrix elemen
Ul 8,m8; l ,m

s , andd/dtUm,n
l (exp@tXi#)ut50 are given explicitly in

Eq. ~23!. This, together with the fact that@59#

ul 8,m8; l ,m
s

~X̃6 ,p!5
d

dt
Ul 8,m8; l ,m

s
~ te3 ,I ;p!u t50

5 ipk l 8,m8
s d l 821,ldm8,m1 ip

m8 s

l 8~ l 811!
d l 8 ldm8,m

1 ipk l ,m
s d l 8,l 21dm8,m ,

where

k l 8,m8
s

5S ~ l 822m82! ~ l 822s2!

~2l 811!~2l 821!l 82D 1/2

allows us to write the elements ofB s(p) as

B l 8,m8; l ,m
s

5A m8,m
l d l 8,l2 ipk l 8,m8

s d l 821,ldm8,m

2 ip
m8 s

l 8~ l 811!
d l 8 ldm8,m2 ip k l ,m

s d l 8,l 21dm8,m .

V. NUMERICAL RESULTS

From a theoretical point of view, the solution to Eq.~43!

subject to the initial conditionsF̂s(p;0)5I is simply F̂s

5exp@LB s(p)#. This may then be substituted into th
motion-group Fourier transform to find the PDFF(g;L) for
any value ofL.

In practice, however, we must truncateB s(p) at finite
values ofs,l , andp. When the end-to-end distance PDF is
interest, Eq.~39! suggests that we need only considers50.
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We truncate atl 5LB and p5PB , and denote the corre
sponding finite matrix as@B 0(p)#LB

for 0<p<PB . In the

numerical results that follow, we exponentiateL@B 0(p)#LB
,

and examine the convergence of the 00;00 element
exp(L@B 0#LB

) and the behavior of the PDF found by subs
tuting this truncated solution into Eq.~39!.

In the numerical results that follow, all stiffness an
length parameters are normalized by persistence length
@4#. The parametera0 is related to the temperature, Boltz
mann constant and persistence length as

a05
kBT

2l
.

In our numerical results, we takel51, and assume unit
such thatkBT51. For the helical wormlike chain model Ya
makawa defines@4#:

b05a0~11s!21

wheres is the Poisson ratio. As in@4#, we takea050.5 and
s50. In @4# the following moment of end-to-end distanc
was calculated:

^R2&5c`L2
t0

2

2n2
2

2k0
2~42n2!

n2r 4
1

e22L

n2

3S t 0
2

2
1

2k0
2

r 4
@~42n2!cos~nL !24n sin~nL !# D , ~44!

where

c`5
41t0

2

41k0
2 ,1t0

2
~45!

n5~k0
21t0

2!1/2

and

r 5~41n2!1/2.

Herek0 andt0 are the unperturbed values of curvature a
torsion of the helix. In our notation,̂R2&5^uau2&.

Figure 1 shows our technique used to find the end-to-
distance PDF for the KP model withL51 and a050.5.
~This is the Yamakawa model withb05k05t050.! In this
numerical implementation we choseb0510213 and k05t0
50 in order to use our method~which was derived with
nonsingular stiffness and flexibility matrices!. We show how
the form of the PDF converges for different values of tru
cation parameters.

Figure 2 shows the end-to-end distance PDF for
Kratky-Porod model withL51 for several of its parameter
and the truncation valuesLB andPB . We setLB andPB by
choosing successively higher values until the shape of
PDF converged. For thea052 case~which is very stiff!
small oscillations are still present. If we chooseLB and PB
large enough, these oscillations can be made negligibly s
~in the L2 sense!, but this requires a greater computation
burden.
of

in

d

d

-

e

e

all
l

In Figs. 3–5 we show the end-to-end distance PDF’s
the Yamakawa helical wormlike chain model for several p
rameters and compare it with the KP model for various v
ues of normalized lengthL. Following @4#: For HW1, k0
52.5 andt050.5; for HW2,k055.0 andt051.0; for HW3,
k051.0 and t051.0; for HW5, k0530.0 and t058.0.
Clearly for smallerL, the chain is effectively stiffer, and ou
Fourier method exhibits some Gibbs-type oscillations.

Figure 6 shows how the moments of the end-to-end d
tance PDF generated using our technique at discrete va
of L matches with the closed-form result~44! presented in
Fig. 4.14 of@4# .

The benefit of our approach is that the PDF contains
the information to generate any desired moment. While
have demonstrated the compatability of our method w
theKP and helical wormlike models, our method is valid f

FIG. 2. End-to-end distance PDF’s for the KP model for seve
different stiffness values.

FIG. 1. End-to-end distance PDF for the KP model: success
approximations for one stiffness value.
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any second-order stiffness model~with arbitrary linear
chirality term!.

VI. CONCLUSION

This paper contributes three ideas to the understandin
the conformational statistics of stiff macromolecules. Firs
PDE governing the PDF’s for inextensible stiff macromo
ecules with arbitrary~though uniform! local stiffness and
chirality characteristics is derived. This PDE describes a p
cess that evolves on the Euclidean motion group. Sec
analytical tools for the solution of this PDE are present
Third, we show how this analytical framework can be us
to numerically generate PDF’s of interest in polymer scien

FIG. 4. End-to-end distance PDF for the HW and KP mod
with L51.

FIG. 3. End-to-end distance PDF for the HW and KP mod
with L50.5.
of
a

-
d,
.

d
,

the moments of which match with moments generated us
other techniques.
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APPENDIX A: THE OPERATORS X̃ i
R

In this appendix it will be helpful to associate each mat
X̃i defined in Sec. IV with a vector (X̃i)

~ in the following
way:

s FIG. 6. Comparison of moments generated numerically and a
lytically.

s FIG. 5. End-to-end distance PDF for the HW and KP mod
with L52.
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~X̃1!~5S 1

0

0

0

0

0

D , ~X̃2!~5S 0

1

0

0

0

0

D , ~X̃3!~5S 0

0

1

0

0

0

D ,

~X̃4!~5S 0

0

0

1

0

0

D , ~X̃5!~5S 0

0

0

0

1

0

D , ~X̃6!~5S 0

0

0

0

0

1

D .

Given elements of SE(3) parametrized asH5H(q), the
differential operatorsX̃i

R are calculated as

X̃i
Rf ~H !5

d f„H•~ I 1tX̃i !…

dt
U

t50

. ~A1!

By definingqR,i such thatH(q1tqR,i)5H(q)(I 1tX̃i), and
expanding both sides in a Taylor series int, one observes
that

H1tHX̃i5H1t(
j 51

6
]H

]qj
qj

R,i1O~ t2!

since

qj
R,i5

d

dt
~qj1tqj

R,i !u t50 .

Differentiating with respect tot and settingt50 then yields

X̃i5(
j 51

6

H21
]H

]qj
qj

R,i ,

or

~X̃i !
~5(

j 51

6 S H21
]H

]qj
D ~

qj
R,i .

The 636 matrix with columns@H21(]H/]qj )#~ is denoted
JR . One then writes

qR,i5J R
21~X̃i !

~,

which is used to calculate

X̃i
Rf 5(

j 51

6
] f

]qj
qj

R,i5J R
21(

j 51

6

~X̃j !
~ ] f

]qj
. ~A2!

Let q1 ,q2 ,q3 parametrize rotation~i.e., the Euler angles! and
q4 ,q5 ,q6 parametrize translation~i.e., the components of th
vectora). ThenJR and its inverse take the explicit forms
JR5S JR 03

03 ATD and J R
215S JR

21 03

03 A
D ,

where 03 is the 333 with zero entries andJR is the matrix
relating rates of rotation parameters and angular velocity~in
the body-fixed frame!: v5JR@ q̇1 ,q̇2 ,q̇3#T. Substitution of
these definitions into Eq.~A2! results in Eq.~28!.

APPENDIX B: HELICITY REPRESENTATIONS

In this appendix we explain the termDs(Rp
21 A RA21p)

~which is often called a helicity representation! in Eq. ~30!.
Let H v̂ denote the group which leaves the pointv̂PS2 fixed.
To calculate the representations ofH v̂ explicitly, we first
choose a particular coset representativev̂5e3PS2

>SO(3)/SO(2). Thevector v̂ is invariant with respect to
rotations from the SO(2) subgroup of SO(3), and forthis
particular choice ofv̂ we not only haveH v̂>SO(2), but
ratherH v̂5SO(2).

For eachvPS2 we may find Rv PSO(3)/SO(2),such
that

Rv v̂5v.

Explicitly, this rotation matrix is the one which has an ax
pointing in the direction defined byv̂3v, and has a rotation
angle whose sin isi v̂3vi . In general, the rotationR(a,b)
which transforms a unit vectora into the unit vectorb,

b5R~a,b!a,

is defined by

R~a,b!5eC5I 1C1
~12a•b!

ia3bi2
C2, ~B1!

wherec5a3b andC is defined byCx5c3x. This follows
easily from the fact thatia3bi5sinuab and a•b5cosuab
where 0<uab<p is the counterclockwise measured ang
from a to b as measured in the direction defined byc. Hence,
in the current context,

Rv5R~ v̂,v!5ematr[v̂3v] ,

where matr@c# is the skew-symmetric matrix such tha
(matr@c#)x5c3x.

For any APSO(3) it follows from the definition ofRv
that

RA21v v̂5A21v.

Multiplying both sides byA, making the replacementv
5Rv v̂ on the right-hand-side, and multiplying both sides
Rv

21 means

~Rv
21 A RA21v! v̂5 v̂.

Therefore,
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Q~v,A!5
n

~Rv
21 A RA21v! PH v̂ .

The representations ofH v̂ may be taken to be of the form

Ds :f→eisf, 0<f<2p,

ands50,61,62, . . . .This is just the usual Fourier series o
S1>SO(2).

We now derive the form ofQ(v,A) explicitly. At first
sight this would appear to be a complicated function ofv and
A. We show that this is not as complicated as one mi
believe.

We begin by observing that

RA21v5R~ v̂,A21v!5ematr[v̂3(A21v)] .

Using general rules for cross-products, one finds that

v̂3~A21v!5A21@~Av̂!3v!]
s

s

l

a

v

t

and

matr@A21$~Av̂!3v%#5A21matr@~Av̂!3v#A.

Since conjugation commutes with the matrix exponent
it follows that

RA21v5A21R~Av̂,v!A5A21ematr[(Av̂)3v]A.

Substitution of this into the definition ofQ(v,A), and using
the fact that

Rv
215exp$2matr@~ v̂3v!#%5exp$matr@~v3 v̂!#%,

one finds

Q~v,A!5ematr[(v3 v̂]ematr[(Av̂)3v]A. ~B2!

While the derivation here is for unit vectorsv, everything
follows in exactly the same way forp5pv.
ry
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@53# W. Tomé, Path Integrals on Group Manifolds~World Scien-

tific, Singapore, 1998!.
@54# H. Kleinert, Path Integrals in Quantum Mechanics, Statistic

and Polymer Physics, 2nd ed.~World Scientific, Singapore
1995!.

@55# I. M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro,Representa-
tions of the Rotation and Lorentz Groups and Their Applic
tions ~Pergamon Press, New York, 1963!.
-

@56# N.J. Vilenkin, E.L. Akim, and A.A. Levin, Dokl. Akad. Nauk
SSSR112, 987 ~1957! ~in Russian!; also N.J. Vilenkin and
N.J. Klimyk, Representation of Lie Groups and Special Fun
tions ~Kluwer Academic, Dordrecht, Holland, 1991!, Vols.
1–3.

@57# J.-M. Normand,A Lie Group: Rotations in Quantum Mechan
ics ~North-Holland, New York, 1980!.

@58# A.B. Kyatkin and G.S. Chirikjian, Acta Appl. Math.53, 123
~1998!.

@59# G.S. Chirikjian and A.B. Kyatkin,Engineering Applications of
Noncommutative Harmonic Analysis~CRC Press, in press!.

@60# W. Miller, Lie Theory and Special Functions~Academic Press,
New York, 1968!; also see W. Miller, Commun. Pure App
Math. 17, 527 ~1964!.


